Autoryzowane szkolenia MicrosoftDP 200T01
Implementing an Azure Data Solution

1 390 € (excl. VAT)

The basic price includes:

  • training,
  • training materials on SkillPipe platform,
  • lunch + coffee breaks,
  • Microsoft Certificate,
  • 14-day contact with the trainer after the training.

Microsoft Certified Professional (MCP)

Order Microsoft Certified Professional (MCP) voucher

See details

We organise Pearson VUE exams

As Pearson VUE Authorized Test Center, we enable taking the exams provided by Perason VUE.

See details

We redeem Microsoft Software Assurance vouchers

Software Assurance - purchase programme of Microsoft solutions for the duration of licence agreements. Did you receive a Software Assurance Training Voucher? You can redeem it with us.

See details

Microsoft Certified Professional (MCP)

Order Microsoft Certified Professional (MCP) voucher

See details

We organise Pearson VUE exams

As Pearson VUE Authorized Test Center, we enable taking the exams provided by Perason VUE.

See details

We redeem Microsoft Software Assurance vouchers

Software Assurance - purchase programme of Microsoft solutions for the duration of licence agreements. Did you receive a Software Assurance Training Voucher? You can redeem it with us.

See details

About this course


In this course, the students will implement various data platform technologies into solutions that are in-line with business and technical requirements, including on-premises, cloud, and hybrid data scenarios incorporating both relational and NoSQL data. They will also learn how to process data using a range of technologies and languages for both streaming and batch data.

The students will also explore how to implement data security, including authentication, authorization, data policies, and standards. They will also define and implement data solution monitoring for both the data storage and data processing activities. Finally, they will manage and troubleshoot Azure data solutions which includes the optimization and disaster recovery of big data, batch processing, and streaming data solutions.

Prerequisites:

In addition to their professional experience, students who take this training should have technical knowledge equivalent to the following courses: Azure Fundamentals


Course Outline

Module 1: Azure for the Data Engineer
This module explores how the world of data has evolved and how cloud data platform technologies are providing new opportunities for businesses to explore their data in different ways. The students will gain an overview of the various data platform technologies that are available and how a Data Engineer's role and responsibilities has evolved to work in this new world to an organization's benefit.

Lessons

  • Explain the evolving world of data
  • Survey the services in the Azure Data Platform
  • Identify the tasks that are performed by a Data Engineer
  • Describe the use cases for the cloud in a Case Study
  • Lab : Azure for the Data Engineer
  • Identify the evolving world of data
  • Determine the Azure Data Platform Services
  • Identify tasks to be performed by a Data Engineer
  • Finalize the data engineering deliverables

Module 2: Working with Data Storage
This module teaches the variety of ways to store data in Azure. The students will learn the basics of storage management in Azure, how to create a Storage Account, and how to choose the right model for the data want to be stored in the cloud. They will also understand how Data Lake storage can be created to support a wide variety of big data analytics solutions with minimal effort.

Lessons

  • Choose a data storage approach in Azure
  • Create an Azure Storage Account
  • Explain Azure Data Lake storage
  • Upload data into Azure Data Lake
  • Lab : Working with Data Storage
  • Choose a data storage approach in Azure
  • Create a Storage Account
  • Explain Data Lake Storage
  • Upload data into Data Lake Store

Module 3: Enabling Team Based Data Science with Azure Databricks
This module introduces students to Azure Databricks and how a Data Engineer works with it to enable an organization to perform Team Data Science projects. They will learn the fundamentals of Azure Databricks and Apache Spark notebooks; how to provision the service and workspaces; and how to perform data preparation task that can contribute to the data science project.

Lessons

  • Explain Azure Databricks
  • Work with Azure Databricks
  • Read data with Azure Databricks
  • Perform transformations with Azure Databricks
  • Lab : Enabling Team Based Data Science with Azure Databricks
  • Explain Azure Databricks
  • Work with Azure Databricks
  • Read data with Azure Databricks
  • Perform transformations with Azure Databricks

Module 4: Building Globally Distributed Databases with Cosmos DB
In this module, students will learn how to work with NoSQL data using Azure Cosmos DB. They will learn how to provision the service, how they can load and interrogate data in the service using Visual Studio Code extensions, and the Azure Cosmos DB .NET Core SDK. They will also learn how to configure the availability options so that users are able to access the data from anywhere in the world.

Lessons

  • Create an Azure Cosmos DB database built to scale
  • Insert and query data in your Azure Cosmos DB database
  • Build a .NET Core app for Cosmos DB in Visual Studio Code
  • Distribute data globally with Azure Cosmos DB
  • Lab : Building Globally Distributed Databases with Cosmos DB
  • Create an Azure Cosmos DB
  • Insert and query data in Azure Cosmos DB
  • Build a .Net Core App for Azure Cosmos DB using VS Code
  • Distribute data globally with Azure Cosmos DB

Module 5: Working with Relational Data Stores in the Cloud
In this module, students will explore the Azure relational data platform options, including SQL Database and SQL Data Warehouse. The students will be able explain why they would choose one service over another, and how to provision, connect, and manage each of the services.

Lessons

  • Use Azure SQL Database
  • Describe Azure SQL Data Warehouse
  • Creating and Querying an Azure SQL Data Warehouse
  • Use PolyBase to Load Data into Azure SQL Data Warehouse
  • Lab : Working with Relational Data Stores in the Cloud
  • Use Azure SQL Database
  • Describe Azure SQL Data Warehouse
  • Creating and Querying an Azure SQL Data Warehouse
  • Use PolyBase to Load Data into Azure SQL Data Warehouse

Module 6: Performing Real-Time Analytics with Stream Analytics
In this module, students will learn the concepts of event processing and streaming data and how this applies to Events Hubs and Azure Stream Analytics. The students will then set up a stream analytics job to stream data and learn how to query the incoming data to perform analysis of the data. Finally, they will learn how to manage and monitor running jobs.

Lessons

  • Explain data streams and event processing
  • Data Ingestion with Event Hubs
  • Processing Data with Stream Analytics Jobs
  • Lab : Performing Real-Time Analytics with Stream Analytics
  • Explain data streams and event processing
  • Data Ingestion with Event Hubs
  • Processing Data with Stream Analytics Jobs

Module 7: Orchestrating Data Movement with Azure Data Factory
In this module, students will learn how Azure Data Factory can be used to orchestrate the data movement and transformation from a wide range of data platform technologies. They will be able to explain the capabilities of the technology and be able to set up an end to end data pipeline that ingests and transforms data.

Lessons

  • Explain how Azure Data Factory works
  • Azure Data Factory Components
  • Azure Data Factory and Databricks
  • Lab : Orchestrating Data Movement with Azure Data Factory
  • Explain how Data Factory Works
  • Azure Data Factory Components
  • Azure Data Factory and Databricks

Module 8: Securing Azure Data Platforms
In this module, students will learn how Azure provides a multi-layered security model to protect data. The students will explore how security can range from setting up secure networks and access keys, to defining permission, to monitoring across a range of data stores.

Lessons

  • An introduction to security
  • Key security components
  • Securing Storage Accounts and Data Lake Storage
  • Securing Data Stores
  • Securing Streaming Data
  • Lab : Securing Azure Data Platforms
  • An introduction to security
  • Key security components
  • Securing Storage Accounts and Data Lake Storage
  • Securing Data Stores
  • Securing Streaming Data

Module 9: Monitoring and Troubleshooting Data Storage and Processing
In this module, the students will get an overview of the range of monitoring capabilities that are available to provide operational support should there be issue with a data platform architecture. They will explore the common data storage and data processing issues. Finally, disaster recovery options are revealed to ensure business continuity.

Lessons

  • Explain the monitoring capabilities that are available
  • Troubleshoot common data storage issues
  • Troubleshoot common data processing issues
  • Manage disaster recovery
  • Lab : Monitoring and Troubleshooting Data Storage and Processing
  • Explain the monitoring capabilities that are available
  • Troubleshoot common data storage issues
  • Troubleshoot common data processing issues
  • Manage disaster recovery
     

CLOSEST DATES:

Call Us: +48 800 080 322

TRAINING DURATION

3 d x 8 h (Total 24 h)

Do you have any questions?
Do you need more information?
Do you want to pre-book the place?

Call Us!
+48 32 259 11 80

Hotel during training

Are you looking for a Hotel for the duration of a training course? Select the city and see our offer.

Hotels in Gdansk
Hotels in Katowice
Hotels in Lodz
Hotels in Poznan
Hotels in Rzeszow
Hotels in Szczecin
Hotels in Warsaw
Hotels in Wroclaw